

FACE TECHNOLOGY & APPLICATIONS SPACE TECHNOLOGY & APPLICATIONS (STAIR-2001)

Mechanism to Ensure Safety of Fission System During Launch

Thomas Godfroy¹, Peter Ring², Bruce Patton¹, Mike Houts¹, Kevin Pederson¹

¹NASA – MSFC, Propulsion Research Center, Huntsville, AL 35812 ²Advanced Methods and Materials, Sunnyvale, CA 94086 Thomas.Godfroy@msfc.nasa.gov / 256.544.1104

In-Space Fueling

In-space fueling option for SAFE-100

Concept Description

- Fuel launched in canister external to reactor.
- When desired orbit is achieved, canister pivots into place and inserts fuel.
- Canister is then jettisoned (if desired).
- Builds on concept originally proposed by NEPSTP program.

Potential Benefits

- Canister can be designed for extremely large shutdown margins during both credible and non-credible accidents.
- Re-entry cone on fueling canister potentially simpler / lighter than re-entry cone on reactor.
- Jettisoning canister after fueling increases specific power during NEP phase.

In-Space Fueling

Fuel insertion into SAFE-100

Status

- Canister / fueling mechanism designed.
- Fabrication slated to begin May 2001.
- Initial testing late FY01.

Potential Concerns

- **Reliability** reactor cannot operate unless nearly all fuel successfully inserted.
- **Precedent** optimal method for ensuring launch safety is mission/concept dependent.

After fueling, canister is jettisoned